MicroEmacs Reference Card

for JASSPA’s version 2006.09
Abbreviations: C = Ctrl (Control), shortcuts are case insensitive: C—a = C—A.

Starting and leaving

To enter MicroEmacs, just type me (= ne + macros). You can activate the menu
line with £1 and leave it with C—g. Exit the program through C-x C-c (or esc
z without any questions).

Help

General help
command-apropos
describe-key
describe-variable
describe-bindings

NEKIEN]

2orC-h k

o <

Error Recovery

abort-command partially typed or executed
undo an unwanted change (undo)

C-g
C-x uorC—_
redraw a garbaged screen (recenter) c-1

Multiple Windows

delete all other windows (delete-other-windows) Cc-
delete this window (delete-window) c-
split window in two: upper / lower (split-window-vertically) C-
split window in two: left / right (split-window-horizontally) C-
switch cursor to next window (next-window) c-
switch cursor to previous window (previous—-window) c-
Buffers

select another buffer (find-buffer) C-x b

go to next buffer (next-buffer) C-x x

list all buffers (1ist-buffers) C-x C-b

remove a buffer (delete-buffer) C-x k

change buf fer-mode C-x m
Motion

entity to move over backward forward

—char (-acter) C-b c-f

-word esc b esc f

-line C-p C-n

beginning-/end-of-line C-a C-e

—-paragraph esc p esc n

beginning-/end-of-buffer esc < esc >

recenter and redraw (recenter) C-1

go to line (goto-1ine) esc g

set-alpha-mark C-x C-a {one character)

goto—alpha-mark

Killing and Deleting

C—x
browsing mode (browse) £3

a {one character)

File
view file read-only (view-file) C-x C-v
open file read-write (find-file) C-x C-f
insert contents of another file into this buffer (insert-file) C-x C-i
replace this file with the one you really want (read-file) C-x C-r
save this buffer to a file on disk (save-buffer) C-x C-s
write this buffer to a specified file (write-buffer) C-x C-w
File-browser (£10)
«directoryx* xfilesx
space update
return fold/unfold update
C-return recursive fold/unfold update
tab toggle buffers tab toggle buffers
enter directory return open file
— space select current file
— + select files by pattern
— x execute shell command
on selected files (% £)
Capitalisation and transposition
word-commands do not apply to characters left of the cursor!
capitalize-word (Example) esc ¢
upper—-case-word (EXAMPLE) esc u
lower-case-word (example) esc 1
lower-case-region C-x C-1
upper-case-region C-x C-u
swap character with previous (t ranspose—-chars) C-t
current line sinks down (t ranspose-1lines) C-x C-t

entity to kill backward forward
—delete-char (-acter) backspace c-d
~-kill-word esc backspace esc d

line (to end of) —

start region (set-mark)
exchange-point-and-mark
kill-region
copy-region

paste (yank)

paste previously cut (reyank)
copy-rectangle
kill-rectangle
yank-rectangle

toggle overwrite / insert mode
insert-tab

insert certain character (quote-char)

Shell

execute a shell command (pipe-shell-command)
run new interactive shell (quit to return)

C-k (kill-1ine)

esc space or C-space
C-x C-x
C—w

esc w
C-y

esc y
esc C—w
esc C-y
ins

Cc-1i

C-q

esc @
C-x c

T O WN O

Regular Expressions

If magic mode (letter M on the mode line) is on, then the following regular expres-
sions can be used in search or replace operations.

any single character except a newline (dot)
zero or more repeats *

one or more repeats +

zero or one repeat ?

between M and N repeats \{M, N\'}
any character in the set [.]
any character not in the set [~]
beginning of line ~

end of line $

quote a special character ¢ (not { or }) \¢c
alternative (or) A\
grouping N e \)
nth group \n

word break \b

not beginning or end of word \B
beginning of word \<

end of word \>

(non-) digit (\D) \d
(non-) hexadecimal character (\X) \x
(not) word-constituent character (\W) \w
(not) lower-/upper-case word-constituent char. (\L) \1/(\U) \u
(not) white-space (\S)\s

Searching and replacing

incrementally search forward (isearch-forward) C-s
incrementally search backward (i search-backward) C-r
cancel search (abort-command) C-g

C-x

continue last search forward (hunt-forward) -x h
continue last search backward (hunt-backward) C-x C-h
repl. string on all following occurr. (replace-string) esc r

o

interact. repl. a text string (query-replace-string) esc C-roresc %

Macro commands

execute—named-command esc x

optional numerical argument n (prefix) escnorC-un

start macro recording (start-kbd-macro) C-x (

stop macro recording (end-kbd-macro) C-x)

execute last-defined macro (execute-kbd-macro) C-x e

name the last macro (name-kbd-macro) —

insert macro commands in buffer (insert-macro —

run macro from buffer (execute-buffer) —

run script from file (execute-£file) esc /
Key bindings

globally bind key (global-bind-key) esc k

globally unbind key (global-unbind-key) esc C-k

locally bind key (buffer-bind-key) —
locally unbind key (buf fer-unbind-key) —

(©) Christof Bockler, September 11, 2007

http://creativecommons.org/licenses/by-nc-nd/2.0/de/deed.en_GB

DRAFT

Developping MicroEmacs macros

Define a macro by writing:

define-macro <name>

lemacro

Macros are written in an interpreted scripting language
e prefix (polish) notation for functions (function arg arg arg ...)
e one command per line and one line per command

e ; starts comment lines
e \ is escape character that needs to be doubled in command arguments

Datatypes

String every value is a string and can be quoted "string" (necessary if con-
taining whitespace); maximum length is 1024 characters; C-like \t, \n
and \\ works

Integer implicitly converted to/from decimal string representation; C-like notations
(123, 076, 0x2f)work

Boolean true (integer # 0, e.g. 1) or false (otherwise, e.g. 0 or non numeric
string), compatible with C

List well formed string: first and last character is delimiter; positive integer index
1,2,...)

Types of variables

Name 1stchar scope example

environment v. S OS environment SPATH

system v. S MicroEmacs ?

user v. (deprecated) % MicroEmacs

buffer v. : buffer :buffer:var

command v. command or macro .command.var

register v. # macro execution #1, #p, #g

macro v. @ macro ?

directive ! !force

function (operator) & &add
Directives

'if <condition> !while <condition>

'elif <condition> [!continue]

.. !done
lelse

. !repeat
lendif

'until <condition>

DRAFT

DRAFT

labort exits with failure

!return exits with success

! force ignores return status

'bell rings the bell
Debugging

Set debugging on with set-variable $debug 1
Options then:
help
abort macro
redraw screen
continue normally
step (through all called macros) s
display value of variable v
step through this macro only any other key
If necessary set debugging back off: set-variable $debug 0

-—O(?-o
= Q

Variable functions

First three chracters of name after & are significant.

Show value in message line describe-variable

Numeric functions

return value

add /subtract &add / &sub al+a2 / al —a2
multiply / divide smul / &div al-a2 / al:a2
pre- / post-increment &inc / &pinc al+a2/ al

pre- / post-decrement &dec / &pdec al—a2/ al
negate a number &negate —al

absolute value sabs lal]

division remainder &mod al mod a2

Bitwise operators
AND/OR/XOR sband / &bor / sbxor
NOT &bnot

Logical operators and Comparisons

returning 1 for true and 0 for false.

AND / OR &and / &or (strict evaluation)
NOT ¬

integer equality &equal

less than &less

greater than &great

case (in-) sensitive string equality &sequal (&isequal)

does string match regular expression &xsequal

DRAFT

DRAFT

String functions

length of string &len

concatenation &cat

divide string and return left / right part ~ sleft /&right (index before cut)
cut out a part smid (string) (start index) {length)
convert to upper / lower case &supper/ &slower

trim whitespace on left / right end strleft/&trright

trim whitespace on both ends &trboth

search and replace & rep (string) (search) (replace)
search and replace regular expression & xrep (string) (search) (replace)

Test functions

&inword

&exist

&sin (returns start of first occurr.)
&isin (returns start of first occurr.)

Is character word constituent?

Does variable/command/macro exist?

Is string contained in another one?
case insensitive variant

List functions

& 1get (list) (index)
&1£ind (list) {entry)

return entry
index of a certain element

return list after ...
inserting an entry & linsert (list) {index) {entry)

index 0: at the beginning

index -1: at the end

index -2/-3: alphabetically (case s./i.)

s1set (list) (index) (entry)

&1del (list) {index)

updating an entry
deleting an entry

Output

ml-write (message)
insert-string
yank and reyank)

to the message line
into the buffer

Message line input

@m1 (prompt)

@m12 {prompt) (default)

@m11 {prompt) (default)
0 general input / history (default)
1 absolute filename
9 user supplied completion list
a completion list in buffer

@mc (prompt)

@mc1 {prompt) (valid chars)

@mc4 {prompt) (help message)

DRAFT

read string
ditto with editable default value
ditto with non-editable default value

(append to @m1.)

read character
ditto with list of accepted characters
ditto with help message

